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Solution of master equations for small bistable systems 
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Worcestershire WR14 3PS, UK 
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Abstract. The master equations for bistability in the bad cavity limit in an atomic system 
is solved when the number of atoms N is not more than 45. A detailed comparison is 
made of results from Fokker-Planck equations and from the master equation. The validity 
of the decorrelation approximation for the master equation is examined. 

1. Introduction 

The theory of absorptive optical bistability for homogeneously broadened two-level 
atoms interacting resonantly with a coherent field has now had good experimental 
support at a quantitative level [l].  Most of the predictions have been based on the 
solutions of the Maxwell-Bloch equations [2] which do  not take into account fluctu- 
ations in the electromagnetic field. However, for these experiments the saturation 
photon number is of the order of lo5, and so quantum statistical effects are either not 
important or can be adequately treated through a linearised analysis of fluctuations 
around steady states. This linearised analysis can be done by using a Fokker-Planck 
equation (FPE) [3,4] or by making suitable factorisation assumptions on correlation 
functions [5] (decorrelation method). A linearised analysis of fluctuations (where it 
exists) shows that the strength of fluctuations scales inversely with the saturation photon 
number [3] N,  or the number of atoms [4] N. At critical points, such as the threshold 
for hysteresis, a linearised theory does not exist and then it is necessary to perform a 
non-linear [6] analysis of quantum fluctuations using the FPE. However, a description 
in terms of FPE still requires large N or N,. If  the saturation photon numbers in these 
experiments could be reduced to the order of 10, we might extrapolate the results from 
theories valid for large N or N,  and state that quantum statistical effects could be of 
the order of 10%. We wish to examine how far such extrapolations are valid in practice. 
The physical domains where fluctuations become large, although difficult to achieve, 
are potentially feasible experimentally. 

An approach to non-equilibrium quantum statistical systems which is general and 
does not depend on N or N,  being large is based on quantum mechanical master 
equations ( M E )  which are Schrodinger equations for the density matrix (when damping 
has been incorporated by considering coupling to reservoir modes). This coupling is 
assumed to be weak and its spectrum flat. The weak coupling assumption allows a 
calculation to second order in this coupling. These standard assumptions [7] are 
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physically reasonable (even for small systems) and give rise to the well known theory 
of quantum Markov processes. The M E  is difficult to solve directly and until now has 
been solved (in the bad cavity limit) explicitly only for N = 1, or for the steady state 
when there is only collective damping [8,9]. We will solve the M E  in this limit for N 
of the order of 45 by making use of important relations due to permutation symmetry. 
(The size of systems that can be treated this way will increase as more powerful 
computers become available.) Without the use of this symmetry, calculations for N < 5 
only would be feasible. 

For a general quality cavity and in a frame rotating at the resonant frequency o 
we have (in the absence of detuning) the M E  [lo, 111 

N 
/j =CY[a+-a, p]+g[a+J+-aJ - ,p l+~y l l  c ( 2 U ~ l P ( + ; I ) - ( + ~ ) ( + c l ) P - p a t , l a ( , ) )  

+ 2y0 c (U;] ,pU;, )  - p )  + K (2apa' - a +up - pa+a)  

, = 1  

N 

(1) 

where a+ and a are photon creation and annihilation operators, g is the atom-field 
coupling constant ( g  = ( o p 2 / 2 h e o V ) " * ) ,  Vis the quantisation volume, p is the strength 
of the atomic dipole moment and E~ is the vacuum permittivity. The pseudo-spin 
operators describing the two-level atoms are the Pauli spin matrices U ; )  and U:,) (for 
1 S j  G N ) .  They satisfy the commutation relations 

] = I  

(+;kIl = a E I S J k  

(+(kIl = 2a;~)6,k. 

If p is the amplitude of the driving field, then the scaled field CY is given by 

where & is the phase change at the input mirror on transmission, T is the transmission 
of the mirror at the output, F is the finesse of the cavity, K is the cavity field decay 
rate, yo'  is the radiative lifetime and yo is the atomic decay rate due to collisions. J' 
and J' are collective atomic operators 

N 

If we now specialise to a bad cavity [ 111, we have 

YII, (tr1, + Yo)<< g"12 gN1'2/log N <( K ( 5 )  
and it is possible to adiabatically eliminate the field and obtain an equation for the 
density pA( t )  for the atomic system alone. pA( t )  satisfies 

/jA(f) = - i i i [ J++J - ,  PA] + ( g 2 / K ) ( 2 J - p ~ J + - J + J - p ~ - p ~ J + J - )  

N 

+!??,I 1 ~ 2 U ~ ~ ~ ~ A U ~ l ~ a ~ l a ~ , ~ ~ ~ ~ ~ A U ~ ~ ~ a ~ ~ ~  
, = I  

N 
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and 6 = -iga/K. 
Before we proceed to the solution of the M E  we will briefly outline the FPE approach 

[12,13] and the decorrelation method [5,14], so that we can draw inferences later 
concerning their validity. There is more than one FPE which can be associated with 
an ME, although they are all obtained via a truncation of a Kramers-Moyal type of 
expansion [7]. Inherent in an FPE is the ordering of operators in correlation functions 
which can be calculated using it. We will be interested in normal and symmetric 
orderings. The Fokker-Planck probability distribution P associated with the density 
matrix p of equation (1) can be defined by 

,yp(A) = n d2aj P(a,, . . . , aj, . . . exp i Ajaj ) ( j  1 (7) 

where 

xp = Tr( P A )  
and 

A = e ~ h , J +  e i A Z J '  e ~ A , J -  e i h 4 a t  e i A 5 a  

for normal ordering whereas for symmetric ordering 

A = exp(i(A,J++A,J*+ A,J -+A4a '+Asa) ) .  

The multi-variable FPE for P, which result from a truncation keeping derivatives to 
second order, are difficult to solve in general. A numerical solution is facilitated when 
the diffusion matrix is positive definite by noting the equivalence with Ito stochastic 
differential equations [7]. 

If A is the drift vector and D the diffusion matrix for the FPE then the associated 
Ito stochastic differential equation is 

(8) 
where d W, , d W,,  . . . , d Ws are independent Wiener processes and BBT = D. For P in 
the normally ordered and symmetric cases we will use the positive P [6,12] and Wigner 
[ 131 representations, respectively. All 'physically' real quantities are allowed to be 
complex in the positive P representation and the stochastic trajectory solutions of 
equation (8) are free to explore all of a ten-dimensional phase space. It is to be hoped 
that in calculations the weight contributed by parts of phase space which very badly 
violate the 'physical' requirements on the inversion (namely lzsl s N / 2 )  should be 
small. We can proceed without rejecting any trajectories. At the critical point, however, 
g"'(0) is estimated poorly since some instability in the positive P method exists which 
has recently been found [6]. This instability causes the trajectories to linger too long 
in parts of phase space which, in a conventional representation, would be unphysical. 
Lower-order moments, such as the expectation of the field and intensity, are not affected 
significantly by the instability. We have also adopted a more stringent criterion in 
which trajectories leaving lzsl S N / 2  are rejected and so, by construction, the instability 
is removed. For the Wigner case this instability is not present. However, D is not 
positive definite throughout phase space although it is so on the manifold of steady 
states. In our calculations at the critical point, the stochastic trajectories very rarely 
visited regions of phase space lacking this positive definiteness. At the critical point 
we have concentrated on the qualitative differences between the M E  and FPE calcula- 
tions. For some quantities the FPE results do not show the same qualitative trends as 
those for the ME. The Ito stochastic differential equations are solved numerically by 
essentially changing the infinitesimals to differences and the resulting algorithm [7] is 

d a  = A d t + B  d W  
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the analogue of the Euler method for ordinary differential equations. The algorithm 
is widely used and gives satisfactory results provided the time step is short enough. 
Independent noise sources are simulated by successive calls to a Gaussian distribution 
random number generator (Numerical Algorithms Group ( N A G )  routine GOSDDF). The 
routine updates the seed of the underlying multiplicative congruential generator in 
each call, and thus the independence of the noise sources is maintained. The statistical 
properties of this generator are good for up to 240 calls as it has an 80 bit seed. In a 
typical run we use the order of lo9 random numbers and there should not be any 
problems with spurious correlations. 

We will also need the results of the linearised analysis of fluctuations [3,4]. In the 
bad cavity limit 

where 

and x is the steady-state output field related to the input y by 

y = x  1+- ( 1 3  

Moreover, the ratio of incoherent intensities is 

The other common approach to the solution of the M E  is through a decorrelation 
method. We shall consider the master equation of (6) .  On taking moments of operators 
using the master equation we obtain 

(10) 

( 1 1 )  

If  we calculate the time evolution of ( J ' J - ) ,  higher-order correlations will appear in 
the equations and in that way an infinite hierarchy of equations is obtained. In order 
to break this hierarchy, the scaling of collective fluctuations [3, 5, 14, 151 with respect 
to N is used. It is assumed that 

(d/dt)(J-)  = 2ih(J')+ (2g2/ K)(J'J-) - y,(J-)  

(d/dt)(J') = ih((J-)-(J+)) -(2g2/K)(J+J-)- y , , ( tN+(J ' ) ) .  

( J ' J - )  - ( J z ) ( J - )  = O( 1/N) 

and 

( J ' J - )  - ( J + ) ( J - )  = O( 1 /  N). 

This decorrelation certainly leads to a closed set of equations for ( J - )  and ( J ' ) .  We 
will examine the quantities ((J'J-)-(J')(J-)) and ((J'J-) - ( J + ) ( J - ) )  as a function of 
N in different parameter regions. In the calculation of the fluorescent spectrum, we 
need the correlation function (U: ) (  t)o(,,(O)) and through the quantum regression 
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theorem [14] it is necessary to evaluate (u : )~ : , ) )  where p, U = +, -, z. If i = j then 
from the explicit form of the Pauli matrices it is possible to express the product in 
terms of single Pauli matrices. If i f j then owing to the permutation symmetry of the 
atomic dynamics we have 

In particular 

and  

Hence the knowledge of the decorrelation in (26) is enough to calculate the single-atom 
decorrelation too. 

2. Direct solution of master equations 

We will first concentrate on the bad cavity master equation given in equation ( 6 ) .  If 
yll = yo = 0 then the steady-state solution has been found exactly [9], and this is relevant 
to cooperative resonance fluorescence. For N = 1 the ME can be solved in detail [8]. 
However, the general case which is of most interest for bistability is not amenable to 
analytic treatment as far as we are aware. The ME is an  operator equation. It can be 
converted easily into a coupled set of linear ordinary differential equations for the 
matrix elements of the density matrix in a suitable basis for the atomic states. An 
adequate basis for the atomic states of N two-level atoms is the N-fold direct product 
of states of the single-atom states. The number of density matrix elements grows as 
22N which is just the square of the number of basis states. In the absence of single-atom 
damping terms, the Liouvillian commutes with the square of the collective angular 
momentum and so angular momentum or  Dicke states [16] can be introduced. Since 
states with different total angular momentum d o  not mix in this case, the growth of 
the number of density matrix elements is proportional to N 2  which is of course a 
considerable reduction in number over that resulting from the use of the naive atomic- 
state basis. In the presence of single-atom decays, the total angular momentum is not 
a good quantum number. We have to find a symmetry of equation (6) even in the 
presence of single-atom decays. These decay terms d o  not single out any particular 
atom for special treatment. Consequently, if a density matrix is initially permutation 
symmetric, its evolution will preserve that symmetry. Moreover, since the M E  has a 
unique steady-state solution, such a solution will be permutation symmetric. The 
approach which takes into account the simplification of permutation symmetry still 
uses density matrix elements expressed in the simple product basis but works with 
only a small subset of them. If I i)  denotes the state 

(where h = * l  for l ~ j S  N and 1-1) is the ground state of an  atom while 11) is the 
excited state of the atom) then the density matrix can be written as 
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If SN denotes the permutation group over N objects and s is an element in S N ,  then 
there is a unitary operator Vs acting on the density matrix elements such that 

P USpUb'=C Js( i ) ) ( s ( i )JPi j  (18) 

where i is the N-tuple ( i l ,  i 2 , .  . . , i N ) ,  s ( i )  is the N-tuple ( i s ( l l ,  is(*),  . . . , i s ( N ) )  and the 
permutation s is given by 

i, j 

>. ( s(1) s ( 2 )  . . .  s ( N )  
1 2 . . .  

In particular, equation (18) implies that 

Pij = Ps~l(i)sC'(j) (20) 

where s-l is the inverse element of s in S N ,  and equation (20) is valid for arbitrary s. 
Since the numbers iJ are *l, an N-tuple i consists of some number n of +1 and ( N  - n )  
of -1.  A permutation s can be chosen such that 

Such an s is not unique. If t ,  is a permutation in S,  then it can be extended to a 
permutation in of S N  with the definition 

T n ( i ) = ( i t ( , , ,  i r ( 2 j r  * 1 9  i r ( n ) r  i n + l ,  i n + * * .  * * 9 i N ) *  (22)  

Similarly, if t N - ,  is a permutation in S ( N - , j ,  it can be extended to a permutation fN-, 
of S N  by 

f N - n ( i )  = ( i l ,  i 2 9 . .  * 9 i n ,  i r ( n + l ) ,  i r ( n + l ) ,  . ., i t ( N ) ) .  (23)  

Hence if s satisfies (21) then so does ( t ,  s) ,  ( s  * fN-,) and (f, * s fN-,,). In this way 
it is always possible to find a permutation s such that 

for l s k s n  I-: for n < k  
i s - l ( k j  = 

1 for l s k s m  
-1  for m < k < n  

1 for n < k G ( n + m ' )  
-1  for ( n + m ' ) < k < N .  

For an s with these properties we will write 

Ps- ' ( i ) s - ' ( j~  = P n ; m . m , *  ( 2 5 )  

From the M E  we can deduce equations for p n ; m m .  if we note that for any SN symmetric 
operator 0 

(where the notation has the obvious interpretation). 
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Moreover we can show that 

( J - p J + ) , ; , , , , =  m'(n  - m ) p n + l , m + Z . m ' - l + ( N - n  - m ' ) ( N - n  - m'-  1)Pn+i ;m,m'+ l  

+ ( N - n - m ' ) ( n - m + m ' + l ) p . , t , m + l . m ~  (27) 

and 

( J - p ) n ; m , m , =  m ' P n + i ; m + i , m ' - i  + ( N -  n - m')Pn+i ;m,m, .  (28) 

Such relations help to establish the evolution equations which are given by 

(d/dt)p,; , , , ,= -ih[(n - m ) p n - l ; m , m p +  mPn-i;m-i ,m'+i  + ( N -  n - " ) P n + l ; m , m '  

+ m'Pn+i;m+i,m'- i  - m P n ; m - l . m ' -  " p n ; m , m ' - i  

- ( n  - m ) p n ; m + i , m ' - ( N -  n - m ' ) ~ n ; m . m , + i l  

+ ~ [ ( ~ - n - m ' ) p , + i ; m + i , m , - ~ ( n + m + " ) ~ , ; m , m , I  

i- (g2/K){2[(N- n - m')Pn+i;m+i,m*+ m ' ( n  - m ) P n + l . m + z , m ' - ~  

+ [ m ' ( N -  n - m ' ) + ( N -  n - m ' ) ( n  - m ) ] p n + l ; m + l , m  

+ ( N  - n - m')( N - n - m'-  1 ) ~ , , + ~ ; ~ , ~ , + ~ ]  

- [ m ' m + n + m + m ' + ( N - n - m ' ) ( n  -rn+m')+m(n-m)]p, , ; , , ,  

- W N -  n - ~ ' ) p , ; ~ - i , m . + i - 2 1 7 t l ( n - m ) ~ ~ ; m + i , m . - 1 ) .  (29) 

Before we proceed further it is necessary to determine the number of separate 
pn;m,m,  that we are considering. It is easy to see that this is 

N 
( n  + 1)(N- n + 1 )  =a(N+ 1 ) ( N + 2 ) ( N + 3 ) .  (30) 

Hence, although the number of density matrix elements for large N is a factor of the 
order of N larger than the number of elements required when we use the Dicke basis, 
our method can be used in the general situation whereas the Dicke basis cannot. With 
computers available to us, N up  to 45 can be treated. This limit is imposed by the 
memory requirements of the Adam's method differential equation solver that we used. 
For 45 atoms we have 17 296 coupled differential equations and  this requires 820 000 
words of memory. The run times for the calculations are of the order of 35 min CPU time. 

The FPE are solved for two parameter regimes. In one regime ( C  =2 ,  y = d 2 )  the 
linearised analysis would hold (if N were large). In the other ( C  = 4, y = 3d3) linearised 
analysis does not exist, however large N is. Since the M E  is solved for N s 4 5  and 
the FPE holds for large N, we need to solve the Ito stochastic differential equations 
(SDE) for as small an N as possible. In figure 1 we consider the expectation value of 
the intensity for C = 2 and  y = 21'2. If N were large, then this situation would be 
characterised by no bistability and small intracavity fields. The points calculated from 
the M E  lie on a smooth 'curve'. The FPE results were found from the equivalent SDE. 

We note that the asymptotic theories are good even to N = 45. The calculation for 
N = 100 shows that, in the positive-P SDE calculation, the rejection of trajectories 
which leave the physical region overestimates ( I ) .  For N = 200 and  400 the results 
are insensitive to the rejection criterion for trajectories. It is not possible to calculate 
quantities using the Wigner SDE since the problem of non-positive definiteness of the 

n = o  
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log N 

Figure 1. (I) against N,  where I is (<*f), for C = 2 and y = d2. +, M E ;  0, linearised 
analysis; X ,  FPE positive P with rejection criterion; 0, FPE positive P. 

diffusion matrix is acute. There is agreement to 0.4% even for N = 3 2  between M E  

and the linearised analyses. We have also found in other cases that, where a linearised 
FPE analysis is valid for large N, then the linearised analysis when extrapolated down 
to small N does as well and often better than the non-linear treatment. There is, of 
course, no reason to have supposed that the FPE would have performed better than 
the linearised analysis since both are asymptotic theories. It is interesting to see that 
the more simple version of the asymptotic theory extrapolates better down to small N. 

In figure 2 we consider again C = 2 and Y = 2”*, but this time N (  1 - g ‘ 2 ’ ( 0 ) )  is 
calculated. The factor of N is included since linearised theory implies that to leading 

7.001 

l o g  N 

Figure 2. N (  1 -g”’(O)) against N for C = 2 and y =J2 (symbols as in figure 1 ) .  
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order ( 1  -g” ’ (O))  is of order 1,”. The linearised theory and the SDE (when no 
trajectories are rejected) show good agreement with the M E  again even for N as low 
as 45. Hence even for quite small numbers of atoms the asymptotic theories are 
quantitatively reliable for non-critical points. 

We will now turn to the regime where linearised analysis is invalid for all values 
of N. From the formulae of linearised analysis we note that C = 4 with y = 3 J 3  is 
such a case. In the semiclassical picture, hysteresis is about to start at this parameter 
value. An infinitesimal increase in C would lead to an infinitesimal hysteresis loop. 
We first examine g‘2’ (0)  (see figure 3). Again we find good agreement between the M E  

and FPE calculations. However, the positive-P calculations with the procedure of no 
rejection of trajectories used earlier give too high values for g‘*’(O). As we have already 
mentioned, this is due to an  instability of the positive-P equations at the critical point. 
Lower-order moments of the field are not sensitive to criteria for dealing with trajectories 
which assume large values. Owing to the instability in the positive-P FPE for the critical 
point, it is necessary to have an  independent FPE calculation. The Wigner FPE shows 
good agreement with the M E  result for N = 45, and for the larger N values gives a 
smooth extrapolation of the M E  results. We conclude that the FPE and M E  are again 
in good agreement even u p  to N = 45. However, this is not so for l(?)l and ( I ) .  From 
figure 4 we discover the unexpected feature that the modulus of the expectation of the 
intracavity field x decreases below the deterministic value of 31’2. This drop in value 
increases as N becomes smaller. Both the M E  and FPE show a drop although the FPE 

results in no sense join smoothly onto the M E  ones. The Wigner FPE gives the results 
closest to those of the ME, but for N=45 there is a 5 %  difference while for the 
positive-P calculation the difference is as much as 12-13%. When we examine figure 
5, the FPE and M E  have different trends. For the M E  ( I )  decreases smoothly for 
increasing N and tends towards the deterministic value of 3. The FPE calculations of 
the same quantity show it increasing towards 3 from below. This does not mean that 
we are in a region of non-classical statistics since (($*$)-(a)(?*)) is positive. For 
N = 45 the Wigner FPE and M E  agree to 8’10, whereas the disagreement between the 

0 
1.39 5.99 

Figure 3. (g”’(0) - 1) against N for C = 4 and y = 3.4‘3, f, M E ;  0, FPE Wigner; x,  FPE 
positive P with rejection criterion. 

log N 
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b 

0 
0 P 

0 

0 

b 

1.00 
1.39 5.99 

log N 

Figure 4. /($I against N for C = 4 and y = 3J3 (symbols as in figures 1 and 3). 

. 

2.00 I 
1.39 5.99 

log N 

Figure 5. (I) against N for C = 4 and y = 3J3 (symbols as in figures 1 and 3 ) .  

positive-P FPE and the M E  is worse than 20%. In addition there is the qualitative 
difference of the approach to the deterministic value, i.e. the M E  from above and the 
FPE from below. Hence we can state that the FPE are qualitatively incorrect in this 
particular case. 

We expect decorrelation assumptions to be maximally violated for C = 4 and 
y = 3J3, and so we have evaluated quantities for this case for N = 4-45. Our aim has 
been to find scaling behaviour in N. Linearised analysis (inapplicable here) typically 
requires ( ( J ' J - )  - ( J ' ) ( J - ) )  to be proportional to N. We find a proportionality of 
approximately. Similarly, ( ( J + J - )  - ( J + ) ( J - ) )  behaves like roughly. Scaling i s  
not exact. If we consider the normalised (intensive) quantities .?' (= J ' /  N )  and J' 
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(=  J * /  N )  then we can state that approximately 
(jZj-) - ( j z ) ( j - )  - N-L/2  

( j + j - )  - ( j + ) ( j - )  - N-L/2. 

Moreover, we find that ((?*a) - (?)(?*)) has a N - "  dependence where a varies between 
[0.425,0.5] as N increases, which is similar to (31) .  The scaling of fluctuations as 
N-1'2 at the critical point has been found earlier [5 ]  from the FPE, and can be derived 
analytically for the special case of one-dimensional FPE. 

In conclusion we see that the extrapolation of the commonly used 'large N' theories 
for small N is surprisingly good in some situations. However, even for the same 
parameter values, different correlations are not uniformly well calculated by the FPE. 
There are also situations where the fluctuations are incorrectly treated at the qualitative 
level. The picture is not completely clear cut but those who use the large-N theories 
may expect to get some useful results even for the smallest systems for the currently 
planned experiments. 
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